91 research outputs found

    Open-vocabulary keyword spotting in any language through multilingual contrastive speech-phoneme pretraining

    Full text link
    In this paper, we introduce a massively multilingual speech corpora with fine-grained phonemic transcriptions, encompassing more than 115 languages from diverse language families. Based on this multilingual dataset, we propose CLAP-IPA, a multilingual phoneme-speech contrastive embedding model capable of open-vocabulary matching between speech signals and phonemically transcribed keywords or arbitrary phrases. The proposed model has been tested on two fieldwork speech corpora in 97 unseen languages, exhibiting strong generalizability across languages. Comparison with a text-based model shows that using phonemes as modeling units enables much better crosslinguistic generalization than orthographic texts.Comment: Preprint; Work in Progres

    Assessing risk to fresh water resources from long term CO2 injection- laboratory and field studies

    Get PDF
    In developing a site for geologic sequestration, one must assess potential consequences of failure to adequately contain injected carbon dioxide (CO2). Upward migration of CO2 or displacement of saline water because of increased pressure might impact protected water resources 100s to 1000s of meters above a sequestration interval. Questions posed are: (1) Can changes in chemistry of fresh water aquifers provide evidence of CO2 leakage from deep injection/sequestration reservoirs containing brine and or hydrocarbons? (2) What parameters can we use to assess potential impacts to water quality? (3) If CO2 leakage to freshwater aquifers occurs, will groundwater quality be degraded and if so, over what time period? Modeling and reaction experiments plus known occurrences of naturally CO2-charged potable water show that the common chemical reaction products from dissolution of CO2 into freshwater include rapid buffering of acidity by dissolution of calcite and slower equilibrium by reaction with clays and feldspars. Results from a series of laboratory batch reactions of CO2 with diverse aquifer rocks show geochemical response within hours to days after introduction of CO2. Results included decreased pH and increased concentrations of cations in CO2 experimental runs relative to control runs using argon (Ar). Some cation (Ba, Ca, Fe, Mg, Mn, and Sr) concentrations increased over and an order of magnitude during CO2 runs. Results are aquifer dependant in that experimental vessels containing different aquifer rocks showed different magnitudes of increase in cation concentrations. Field studies designed to improve understanding of risk to fresh water are underway in the vicinity of (1) SACROC oilfield in Scurry County, Texas, USA where CO2 has been injected for enhanced oil recovery (EOR) since 1972 and (2) the Cranfield unit in Adams County, Mississippi, USA where CO2 EOR is currently underway. Both field studies are funded by the U.S. Department of Energy (DOE) regional carbon sequestration partnership programs and industrial sponsors. Preliminary results of groundwater monitoring are currently available for the SACROC field study where researchers investigated 68 water wells and one spring during five field excursions between June 2006 and July 2008. Results to date show no trend of preferential degradation below drinking water standards in areas of CO2 injection (inside SACROC) as compared to areas outside of the SACROC oil field.Bureau of Economic Geolog

    Laboratory Batch Experiments and Geochemical Modelling of Water-rock-super Critical CO2 Reactions in Gulf of Mexico Miocene Rocks: Implications for Future CCS Projects

    Get PDF
    AbstractStorage of CO2 in deep saline formations in a super critical liquid state has been proposed as a way to mitigate the effects of increased atmospheric CO2 levels. The ultimate fate of the CO2 after injection requires an understanding of mineral dissolution/precipitation reactions occurring between the target formation minerals and the existing formation brines at formation temperatures and pressures in the presence of supercritical CO2. In this experiment core material taken from a Miocene age Gulf of Mexico core from a depth of 2806 m was reacted with synthetic brine at varied but high temperatures and pressures in the presence of super critical CO2. XRD and SEM analyses were conducted before and after reaction to identify dissolution of existing minerals and precipitation of authigenic mineral phases. Periodic geochemical analysis of the reaction fluid was used to quantify changes in the elemental composition of the reaction fluid which helps identify potential mineral dissolution/precipitation reactions.Reaction brine (140ml) was loaded into a high pressure reaction vessel with 8g of core sample.Experimental temperature was set to 70, 100 or 130°C; pressure was set to 200 or 300bar, and solution chemistry was changed from de-ionized (DI) water to a 1.88M NaCl solution. After the introduction of CO2 the Ca and alkalinity concentrations showed the largest increases, Ca concentrations increased ∼1000ppm, suggesting carbonate dissolution was the dominant geochemical reaction. Final equilibrium Ca concentrations increased with decreasing reaction temperature because of greater CO2 solubility. In addition, the reactions with the NaCl brine produced higher equilibrium Ca concentrations than the DI water experiment, likely due to the decrease in ion activity with higher ionic strength solutions. Pressure change from 200 to 300bar did not significantly alter reaction rates. Unlike Ca, silicate dissolution reactions appear to be positively correlated with reaction temperature. Silicate dissolution rates are 2 orders of magnitude slower than carbonate dissolution rates.In this study, PHREEQC was used to simulate brine-rock-CO2 interactions in batch experiments under high pressure and high temperature. Generally, the geochemical models reproduced concentration of Ca, Mg, K and Si seen in the water rock experiments suggesting that carbonate and K-feldspar dissolution are the dominant geochemical reactions. In addition, geochemical models show that dawsonite precipitates in higher salinity (higher Na+ concentration) experiments

    Several Critical Cell Types, Tissues, and Pathways Are Implicated in Genome-Wide Association Studies for Systemic Lupus Erythematosus

    Get PDF
    We aimed to elucidate the cell types, tissues, and pathways influenced by common variants in systemic lupus erythematosus (SLE). We applied a nonparameter enrichment statistical approach, termed SNPsea, in 181 single nucleotide polymorphisms (SNPs) that have been identified to be associated with the risk of SLE through genome-wide association studies (GWAS) in Eastern Asian and Caucasian populations, to manipulate the critical cell types, tissues, and pathways. In the two most significant cells’ findings (B lymphocytes and CD14+ monocytes), we subjected the GWAS association evidence in the Han Chinese population to an enrichment test of expression quantitative trait locus (QTL) sites and DNase I hypersensitivity, respectively. In both Eastern Asian and Caucasian populations, we observed that the expression level of SLE GWAS implicated genes was significantly elevated in xeroderma pigentosum B cells (P ≤ 1.00 × 10−6), CD14+ monocytes (P ≤ 2.74 × 10−4) and CD19+ B cells (P ≤ 2.00 × 10−6), and plasmacytoid dendritic cells (pDCs) (P ≤ 9.00 × 10−6). We revealed that the SLE GWAS-associated variants were more likely to reside in expression QTL in B lymphocytes (q1/q0 = 2.15, P = 1.23 × 10−44) and DNase I hypersensitivity sites (DHSs) in CD14+ monocytes (q1/q0 = 1.41, P = 0.08). We observed the common variants affected the risk of SLE mostly through by regulating multiple immune system processes and immune response signaling. This study sheds light on several immune cells and responses, as well as the regulatory effect of common variants in the pathogenesis of SLE

    Epigenome-wide association data implicates DNA methylation-mediated genetic risk in psoriasis

    Get PDF
    Abstract Background Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperproliferation and altered keratinocyte differentiation and inflammation and is caused by the interplay of genetic and environmental factors. Previous studies have revealed that DNA methylation (DNAm) and genetic makers are closely associated with psoriasis, and strong evidences have shown that DNAm can be controlled by genetic factors, which attracted us to evaluate the relationship among DNAm, genetic makers, and disease status. Methods We utilized the genome-wide methylation data of psoriatic skin (PP, N = 114) and unaffected control skin (NN, N = 62) tissue samples in our previous study, and we performed whole-genome genotyping with peripheral blood of the same samples to evaluate the underlying genetic effect on skin DNA methylation. Causal inference test (CIT) was used to assess whether DNAm regulate genetic variation and gain a better understanding of the epigenetic basis of psoriasis susceptibility. Results We identified 129 SNP-CpG pairs achieving the significant association threshold, which constituted 28 unique methylation quantitative trait loci (MethQTL) and 34 unique CpGs. There are 18 SNPs were associated with psoriasis at a Bonferoni-corrected P < 0.05, and these 18 SNPs formed 93 SNP-CpG pairs with 17 unique CpG sites. We found that 11 of 93 SNP-CpG pairs, composed of 5 unique SNPs and 3 CpG sites, presented a methylation-mediated relationship between SNPs and psoriasis. The 3 CpG sites were located on the body of C1orf106, the TSS1500 promoter region of DMBX1 and the body of SIK3. Conclusions This study revealed that DNAm of some genes can be controlled by genetic factors and also mediate risk variation for psoriasis in Chinese Han population and provided novel molecular insights into the pathogenesis of psoriasis

    Common susceptibility variants are shared between schizophrenia and psoriasis in the Han Chinese population

    Get PDF
    Previous studies have shown that individuals with schizophrenia have a greater risk for psoriasis than a typical person. This suggests that there might be a shared genetic etiology between the 2 conditions. We aimed to characterize the potential shared genetic susceptibility between schizophrenia and psoriasis using genome-wide marker genotype data
    • …
    corecore